If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+4x-51=0
a = 7; b = 4; c = -51;
Δ = b2-4ac
Δ = 42-4·7·(-51)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-38}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+38}{2*7}=\frac{34}{14} =2+3/7 $
| 4x+4+5x+9=148 | | 3b-12=14 | | 6z=-4z+10 | | 12+x=-4x+8x | | 5x+4(x-6)=3(x-8) | | p-168=-9p-8 | | 6(4^(4x))=(1)/(4096) | | 3(3x-9)=30x | | -8x+10=x-17 | | 6x-3=1.5 | | 10x*8=11x | | 2x-21=9x-35 | | 9x+8=x−56 | | -2s=-s-6 | | 55q-4q=2q-5 | | 154-x=285 | | -5c+3=c+201 | | -7+7t=6t | | 2/3d-1/4d=22 | | -15+9x=9-3x | | 7x+10-5x=14 | | 3x/3=6/1 | | 3x+5x-2=38 | | 7x+10*5x=14 | | 16+4x=5x-11 | | 6b-95=b | | e+225=-7e+9 | | -3a^2=27,a=3 | | 12+8x=2x-48 | | 16(4^4x)=1/4096 | | (2+4x)+(4x–8)=(27+9x) | | x2+8x+65=0 |